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We study how cells can optimize fitness in variable environments by tuning the internal fluctuations of
protein expression of a bistable genetic switch. We model cells as bistable toggle switches whose dynamics are
governed by a delayed stochastic simulation algorithm. Each state of the toggle switch makes the cell more fit
in one of two environmental conditions. Different noise levels in protein expression yield different fitness
values for cells in an environment that randomly switches between the two conditions. We compare the
behavior of two cell types, one that can sense the environmental condition and one that cannot. In fast changing
environments both cell types evolve to be as noisy as possible while maintaining bistability of the toggle
switch. In slowly changing environments, evolved nonsensing cells are less noisy while sensing cells evolve
the same noise level as in fast changing environments. Sensing removes the need of genotypic changes to adapt
to changes in the environment fluctuation rate, providing an evolutionary advantage in unpredictable
environments.
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I. INTRODUCTION

Gene expression is inevitably noisy but the noise level
can be tuned and, thus, be subject to selection �1–5�. If
evolvable, the evolutionary pathway of the noise of a gene’s
expression is bound to depend on the processes its proteins
are involved in. Rather than minimizing or maximizing the
noise level, gene networks might evolve specific noise levels
adapted to their tasks and thereby, in many cases, to environ-
mental conditions.

Studies suggest that the noise in the expression level of
critical genes ought to be minimized since it is detrimental to
organismal fitness. Essential genes of yeast and genes in-
volved in circadian oscillators were found to have expression
levels with relatively low noise �5,6�.

However, noise in gene expression can be beneficial by
creating phenotypic diversity in isogenic populations �7�, a
selective advantage in unpredictable environmental condi-
tions �8�. Importantly, noise-driven genetic mechanisms can
evolve �2�. Bacillus subtilis has transient and probabilistic
differentiation. The noise in the expression level of ComK, a
transcription factor that activates the expression of a set of
genes necessary for competence, influences the number of
cells that uptake DNA �9�.

Recently, a Saccharomyces cerevisiae strain was engi-
neered that switches between two phenotypes due to noise in
gene expression �10�. Each phenotype is more fit to one of
two environments. Comparing two populations with different
switching rates, fast switchers outgrew slow ones in rapidly
changing environments, while the opposite occurs in rarely
changing environments, suggesting that it is advantageous
for cells to tune noise-driven interphenotype switching rates
to the environment switch rate �10�. The cells did not have
mechanisms to sense the environment state. When these ex-

ist, they should play a key role in survival in fluctuating
environments �8�.

We investigate how cells can use noise in gene expression
and sensing mechanisms of environmental conditions to
adapt to noisy two-state environments. We model individual
cells, each with a toggle switch �TS�, whose dynamics is
driven by a delayed stochastic simulation algorithm �11�, in a
randomly switching two-state environment. Each state of the
TS is more fit to one of the two environment states. The
environment effects are modeled by subjecting cells to toxins
correspondent to the environment state. Each protein of the
TS inhibits one of the toxins, mimicking the function of the
gene responsible for resistance to tetracycline in Escherichia
coli K-12 �12�.

For comparison and model validation, we study the dy-
namics and evolution of two types of cells, differing in how
the phenotypic switching is regulated. While both cell types
have internal noise-driven switching, as in �10�, only one of
them can bias the switches by sensing the environment
�“sensing cells”�, i.e., the TS state of these cells is affected
by the toxins’ amounts, while in the other cell type it is not
�“nonsensing cells”�.

Simulating the cells dynamics in rapidly and slowly
switching two-state environments, we address the following
questions: can cells increase fitness by tuning the noise level
of the TS? How does the capacity to sense and act upon the
environment state affect the cells’ dynamics and evolutionary
pathway? What advantages sensing mechanisms provide that
justify its maintenance, even though there are significant en-
ergetic costs in doing so?

II. MODEL

Cell populations are simulated at the single cell level. The
cell dynamics are driven by a delayed stochastic simulation
algorithm �SSA� �11,13� based on the original SSA �14�, and*andre.sanchesribeiro@tut.fi
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implemented in Stochastic Genetic Networks Simulator
�SGNSIM� �15�.

The model of gene expression �17� accounts for stochastic
fluctuations and, being a multiple-time delayed reaction, for
the fact that transcription and translation are multistep pro-
cesses that take non-negligible time to complete once initi-
ated. The model was validated �13� by matching measure-
ments of gene expression at the single molecule level �18�.
Time delayed reactions are represented as A→B+C���. In
this reaction, B is instantaneously produced and C is placed
on a waitlist until it is released, after � seconds �11�.

We assume an unbiased two-state environment, with
states 1 and 2, defined by the amounts of W1 and W2. At any
moment during a simulation one of these two substances is
present �in the amount of one molecule� while the other is
absent. Each environment state subjects cells to a specific
toxin �X1 or X2�. Environment state transitions occur via
reactions �1�. The average switching frequency between the
two states is Wfr. Toxins are introduced via reaction �2� and
decay via reaction �3�. cx controls the expected amount of
toxin in a cell. The symbol “ *” in Eq. �2� indicates that the
reactant is not consumed in the reaction. Finally, all chemical
reactions apply to all i=1,2 �when only the index i is
present�, or to all i , j=1,2 with i� j when both indices are
present�,

Wi�
Wfr

−1

Wfr
−1

Wj , �1�

*Wi→
cx

Xi, �2�

Xi→
dx

0” . �3�

Another way to describe the environment dynamics is that Xi
is produced �stochastically� at the rate cx if the environment
is in state Wi.

Gene expression is modeled by time-delayed reactions
�17� where Proi is the promoter of gene i, and Rp is an RNA
polymerase �4�. The delays account for the time duration of
the processes involved in transcription �19� and translation.
Each promoter controls the expression of two proteins, Pi
and Pe,i. Pi represses the other gene of the TS, while Pe,i
degrades a toxin Xi �9�, as in �12�. Reactions �7� model the
binding and unbinding of the repressor protein to the other
gene’s promoter, defining the TS. Proteins decay via reac-
tions �5�, �6�, and �8�,

Proi + Rp→
kt

Proi��1� + Rp��2� + Pi��3� + Pe,i��3� , �4�

Pi→
kd

0” , �5�

Pe,i→
kd

0” , �6�

Proi + Pj�
ku

kr

Proi . Pj , �7�

Proi . Pj→
kd

Proi, �8�

Pei
+ Xi→

kdx

0” . �9�

As a side note, having two independent promoters, instead
of one, controlling the expression of Pi and Pe,i, as long as
the two promoters were equally affected by the repressor
proteins �reaction �7�� and given the values set here for kt and
kr, it would not cause significant changes in the dynamics
since the repressor proteins exist in sufficient amount to re-
press both promoters simultaneously.

The cell’s fitness is measured throughout their life. Each
TS state is more fit to one of two environment states and
both TS states have identical energetic costs, since they ex-
press an equal number of proteins and both proteins are as-
sumed to have equal production costs. It is assumed that cells
aim to simultaneously decrease the number of toxins and
proteins since both are harmful �protein overproduction
wastes resources �4��. The smaller these four quantities are
the better for a cell. Combining these conditions, fitness is
stochastically measured by 10. Since no substance is con-
sumed and the product is not a substrate to any reaction, it
does not affect the cell dynamics.

The propensity, Pr, i.e., the probability that the reaction
will occur in the next infinitesimal time interval �14�, deter-
mines the expected amount of fitness units �fit� produced and
is computed by Eq. �11�, in agreement with the assumptions
of being “fit,” but ensuring that Pr is never infinite. Namely,
the propensity is, at each moment, inversely proportional to
the number of molecules of X1, X2, Pe1

, and Pe2
,

*X1 + *X2 + *Pe1
+ *Pe2

→
cfit

fit, �10�

Pr�10� = cfit ·
1

�X1� + 1

1

�X2� + 1

1

�Pe1
� + 1

1

�Pe2
� + 1

. �11�

For simplicity, we assume that the two toxins have iden-
tical toxicity. Thus, the two phenotypes are symmetric in
fitness. For example, expressing Pe1

with X1 present or ex-
pressing Pe2

with X2 present is equally fit. When the envi-
ronment state switches, the fitness associated to being in
each phenotypic state changes accordingly, as the quantities
of Pei

and Xi change.
One cell type modeled has a sensing mechanism of the

environment state that bias the TS toggles. Signaling mol-
ecules, si, are produced via Eq. �12� when Xi is present, and
decay via Eq. �13�. Reaction �14� models their effect on the
TS. si unrepresses Proi, which expresses Pe,i, which degrades
Xi. Thus, these cells bias the TS’s toggles with the amount of
toxin present, while maintaining the stochastic nature of the
toggling. In the absence of toxins, unbiased toggles occur
due to stochastic fluctuations of the proteins levels. In the
presence of toxins, the state transitions of the TS of sensing
cells are biased by the amounts of signaling molecules
present, so that the TS is more likely to be in the state more
fit to the environment,
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*Xi→
ksig

si, �12�

si→
dsig

0” , �13�

si + ProiPj→
kin

Proi + Pj + si. �14�

It is noted that the toxins do not affect the amount of
proteins Pi in the cell, which regulate the TS state. In non-
sensing cells, the TS dynamics is independent of the toxins.
In sensing cells, the toxins can indirectly affect which protein
is produced, via the signaling molecules that can unrepress
the promoters, but do not affect the mean level of the protein
Pi being expressed, which is determined by kt, kd, and �1.

Rate constants �in s−1� and time delays �in s� are set fol-
lowing the TS model in �13�, taken from measurements in E.
coli, �1=1, �2=20, �3=100, kt=0.05, and kd=0.005. These
two rate constants values are varied to attain TS’s with dis-
tinct levels of noise while maintaining the average proteins’
quantities over time.

In each cell, the number of RNA polymerases �Rp� is 100,
each Proi is 1 and other substances are initially absent. Other
rate constants are cx=1, dx=0.01, kdx=1, kr=0.1, ku=0.005,
cfit=1, ksig=0.01, dsig=0.001, and kin=0.1. These were set so
that on average the number of toxins is �100 and, if gene i
is “on,” Pi�150 �when the TS is bistable, otherwise P1
+ P2�150�. The value of cfit is arbitrary, not affecting the
results qualitatively.

To simulate evolution, mutations are introduced in the
model. In �20� it was shown that the variability of mRNA
levels can be altered by mutations. When simulating muta-
tions, we assume that these only affect kt �transcription ini-
tiation� and kd �protein decay�, causing either its decrease or
increase �equally likely� which changes the noise intensity in
the proteins’ levels. To this end, we set at 10% the probabil-
ity that, at the beginning of a cell’s lifetime, these rates are
simultaneously multiplied or divided by a factor of 2 �de-
pending on which mutation occurred�. A mutation causes the
increase �or decrease� of both kt and kd by a factor of 2. This
change in the rate constants does not change significantly the
proteins’ mean levels, affecting mostly the noise level.

For example, increasing both kt and kd by a factor of 4
decreases the proteins’ mean levels by �1%. Given the lim-
ited number of generations simulated, the maximum change
in the mean level of proteins due to the accumulation of
mutations was below �10% in all cases where mutations
were allowed. Such variations are not significant dynami-
cally since the mutated cells of both cell types always pro-
duced sufficient proteins to cope with the toxins if the TS is
in the appropriate state. More importantly, these changes in
mean levels are, given identical mutations, identical in sens-
ing and nonsensing cells. That is, the change caused by, e.g.,
an increase by a factor of 2 of kt and kd is identical in sensing
and nonsensing cells, thus not introducing any bias favoring
either cell type.

Selection occurs at the end of each generation, eliminat-
ing the 50% least fit cells while the others divide into two
daughter cells, which inherit the �possibly mutated� values of

kt and kd of the mother cell, as well as all substances quan-
tities �except fit units which are set to null� and all other rate
constants values.

It is noted that in �10� an energetic cost is associated with
phenotypic transitions, that is likely to limit the cells’ transi-
tion rate. This is not the case here since the average number
of proteins produced is not altered by switching phenotypic
state, and it is assumed that both proteins have equal produc-
tion costs. Also, we assume that each cell’s dynamics is in-
dependent of the others, which would be false if the cells,
e.g., competed for nutrients in each state or cooperated by
sharing proteins or its byproducts, that inactivate the toxins.
Finally, altering the fitness calculation formula, one could
address other scenarios, not explored here, such as assuming
one toxin more toxic than the other.

In the end of the next section, a cost in sensing is intro-
duced so that sensing and nonsensing cells are equally fit for
one environmental fluctuation rate, and afterwards compete
in an environment with another fluctuation rate.

III. RESULTS

A. Noise and fitness for sensing vs nonsensing cell populations
(fast environmental switching)

We first simulate nine cell populations per cell type �sens-
ing and nonsensing�, each with a unique set of values of kt
and kd. Each population consists of 1000 cells independently
simulated. A cell’s lifetime is 500 000 s. This unrealistically
long lifetime allows better statistics without affecting the re-
sults qualitatively �alternatively one could follow the dynam-
ics of cell lines for many generations�. A cell’s state is mea-
sured every 1000 s. The first 10 000 seconds of a simulation
are disregarded since cells are initialized without proteins.

The nine pairs of values, obtained by multiplying the
original values by factors, all impose equal mean values of
�P1+ P2�, ensuring that differences in noise level �and
thereby in toggling rate and fitness� are not due to differences
in mean values of �P1+ P2�. To obtain the values of kt and kd
for the cells of each population we multiplied the original
values �kt=0.05 and kd=0.005� for populations 1 to 9, re-
spectively, by �0.01, 0.05775�, �0.1, 0.4�, �0.25, 0.65�, �0.5,
0.85�, �1, 1�, �2, 1.1�, �5, 1.175�, �10, 1.205�, and �100,
1.245�.

These two rates cannot be varied by constant amounts
each time to attain equal mean proteins’ expression levels
due to the delay �1, at each transcription event, that accounts
for the promoter occupancy time by an RNA polymerase
�19�. Its existence means that, e.g., constant increases in kd
require each time bigger increases in kt up to a limit, beyond
which it cannot be further compensated due to reaching the
maximum transcription rate �1 transcription event per �1 sec-
onds�.

The environment state, initially randomly set, changes
with an average switching frequency of Wfr

−1. We set Wfr
=10 000 s �fast switching case�.

As kt and kd increase, the TS dynamics changes. The TS’s
of nonsensing cells of populations 1 to 5 are bistable �Fig. 1�,
but of population 6 and beyond are not �Fig. 2�. In these, the
value of kt is such that when the promoter is free it is more
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likely for an RNA polymerase to bind to it than it is for a
repressor protein to bind �if �Rp� kt�kr�. Thus, the two mu-
tually repressing genes of the TS can express simultaneously,
destroying bistability. Nevertheless, the average value of
�P1+ P2� is identical in all populations ��150�. In sensing
cells this loss of bistability also occurs, but only beyond
population 7.

Figure 3 shows the average noise level of the proteins’
time series �P1+ P2� of cells of each population �with and
without sensing�. Noise is measured by the standard devia-
tion over the mean of �P1+ P2� time series �3�.

The noise level of nonsensing cells is independent of the
environment switch rate since the proteins Pi do not interact
with the toxin and, the proteins that do interact with the
toxins, Pe,i, do not interact with any promoter or other pro-
teins. Thus, the noise level in nonsensing cells �Fig. 3� is
identical for any environment state switching frequency. The
noise level of sensing cells depends on environmental fluc-
tuations since the signals can induce toggles in the TS when
the environment changes state. If the TS state is fit to the
environment state, this interaction reduces the cells’ noise
level. Note that these cells’ noise level, if no interaction with
the environment existed, would equal the noise level of non-
sensing cells with equal kt and kd. Due to this dependency on
the environment, the effects of genotypic changes in sensing
cells are easier to interpret by comparing fitness and noise
levels with those of nonsensing cells.

Initially, the noise increases as kt and kd increase since the
number of toggles of the TS increase. Beyond population 5
�for nonsensing cells�, noise decreases as cells lose bistabil-
ity and both genes express simultaneously, since transitions
between the two noisy attractors �21� of the TS contribute

more to noise than the stochastic fluctuations of the proteins’
levels around a mean value. As the fraction of time that P1
and P2 are simultaneously present increases, noise decreases.
For example, cells of population 9 are never bistable and
have low noise, except when compared to population 1 ��1
switch per cell lifetime�.

Sensing cells always have lower noise than nonsensing
ones. The signaling molecules reduce the number of stochas-
tic toggles between the two noisy attractors of the TS since,
when the TS is in a state fit to the environment the signals
reinforce the TS stability.

Importantly, in sensing cells, population 7 has the highest
noise level while in nonsensing cells it is population 5. Sens-
ing cells maintain bistability for a larger range of parameter
values due to the stabilizing effect of the signaling molecules
on the proteins’ levels.

Information on the environment state stabilizes the TS
when the TS state is fit to the environment state, but also
destabilizes it if its unfit, allowing a switch to the fit state.
Since the internal noise in cells of populations 8 and 9 is too
high to be damped by this interaction, these cells are not
bistable and thus their noise level is lower than in cells of
population 7 �since once bistability is lost, the only contribu-
tion to noise is from the fluctuations of the proteins’ levels
around a mean value�.

The fitness of the cell populations is shown in Fig. 4.
From Figs. 3 and 4 one sees, for both cell types, a clear

FIG. 2. Time series of P1 and P2 ��P1+ P2��150� of a cell of
population 9 �unable to sense the environment state�.

FIG. 3. Noise in the time series of P1+ P2 of individual cells,
averaged over 1000 cells per cell population. Cell populations of
the two cell types �sensing and nonsensing cells� differ in the values
of kt and kd. Wfr=10 000 s.

FIG. 4. Fitness of individual cells at the end of their lifetime,
averaged over 1000 cells per cell population. Cell populations of
the two cell types �sensing and nonsensing cells�, differ in the val-
ues of kt and kd. Wfr=10 000 s.

FIG. 1. Time series of P1 and P2 ��P1+ P2��150� of a cell of
population 2 �unable to sense the environment state�.
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correlation between noise level and fitness. The higher the
noise the higher the fitness in rapidly changing environ-
ments. Beyond certain values of kt and kd, the internal noise
disrupts the bistability �as exemplified in Fig. 2� and cells
become unable to adapt to the environment, thus, fitness de-
creases since both proteins are always present. The measured
noise also decreases due to the loss of bistability since, as
said, “state switching” contributes more to noise than fluc-
tuations of proteins levels around a mean value.

From Figs. 3 and 4 one observes that, in sensing cells,
small variations in the noise level cause high variations in
fitness while, comparatively, in nonsensing cells high varia-
tions in noise level cause small variations in fitness.

Within the regime where both cell types are bistable this
is explained as follows. In nonsensing cells, the fitness in-
crease with the increase of internal noise is not because these
cells more often acquire a correct internal state in relation to
the environment state but because during switches of the TS
both proteins levels are low in absolute amounts, while still
almost sufficient in quantity to cope with either toxin. In
sensing cells, the increase in fitness is due to a decrease of
the response time of the TS to changes in the environmental
state. Therefore, identical variations in kt and kd cause higher
increases in fitness of sensing cells than in nonsensing ones.

The increase in noise when varying kt and kd of sensing
cells is much lower than in nonsensing ones due to the inter-
action between sensing cells and the environment. This in-
teraction minimizes the number of toggles of the TS due to
stochastic fluctuations. Sensing cells almost only toggle
when the environment state changes. Because of this and
since toggles of the TS are the events most contributing to
noise, all populations of sensing cells that are bistable have
similar noise levels. Sensing minimizes the noise level while
still allowing response to environmental state changes �pro-
vided the noise is not sufficiently high to disrupt bistability�.

To study the relation between noise, bistability, and fitness
we plot in Fig. 5 the average fraction of lifetime �T� during
which both genes of the TS are expressing and thus, both
proteins are present. As noise increases, the number of tran-
sitions between the two noisy attractors increases, which in-
creases T, that goes through a “phase transition” �in the sense
that, dynamically, the TS goes from bistable to having both
proteins expressed simultaneously�. When this transition oc-
curs and bistability is lost, the TS noise arises only from

fluctuations of the proteins’ levels around a mean value.
The transition in T is caused by, as kt and kd increase, cells

gradually being bistable for lesser time �one protein present
and one absent�, as the number of transitions between the
two noisy attractors increases. Beyond some point �when
�Rp�kt�kr�, as kt and kd increase further, the two proteins
become simultaneously present for longer periods of time,
until the limit T=1, when both proteins are always present.

Note that the environment switches, on average, 50 times
in a cell’s lifetime. Sensing cells, if not too noisy internally,
change their internal state following these switches. The
combined effect of the number of environment switches and
the average time needed for all proteins to decay once its
production ceases results in T�0.58 for sensing cell popu-
lations 1 to 3 �Fig. 5�.

Figures 3–5 results indicate that in rapidly switching en-
vironments both cell types are optimally fit at the transition
between bistability and its loss. The ability to sense the en-
vironment state provides higher fitness by increasing the
probability that the TS adopts a correct state and the range of
values for which the TS is bistable. For small values of kt
and kd �low noise� sensing cells have higher T, since they
switch in response to environmental switches, while the oth-
ers rarely switch since they toggle only due to noise-driven
fluctuations.

B. Evolutionary dynamics of sensing and nonsensing cells
(fast environmental switching)

We now investigate the evolutionary dynamics of the two
cell types �sensing and nonsensing�. To this end, we simulate
cell generations subject to selection and mutations, that
change kt and kd. When a cell divides, all substances �except
fit� are replicated and passed on to daughter cells �16�. This is
an example of a possible realistic evolutionary pathway of
cells evolving their noise level to attain better fit in fluctuat-
ing environments, and as expected from the previous results,
shows that the cells evolve, in rapidly switching environ-
ments, to be in a phenotypic state that lies in the transition
between bistability and its loss. Next, we compare the results
to what occurs in slowly varying environments.

Cells of the first generation are of population 1. This
choice does not affect the end results. Starting with another
population only affects the number of generations necessary
to reach the maximum fitness.

We simulate cell populations of 100 cells for 30 genera-
tions �30G�. Effects of mutations in kt and kd and of selection
on cells’ average noise level are shown in Fig. 6, and on the
average fitness in Fig. 7. After 20G, both cell types are op-
timally fit and the genotypes stabilize, since further changes
cause fitness decrease. The populations of the two cell types
evolved noise levels that match those previously found to be
optimal, namely, �0.75 �as population 5 in Fig. 3� for the
nonsensing cells and �0.25 �as population 7 in Fig. 3� for
the sensing cells, i.e., in both cases in the transition between
bistable and unstable.

Since most mutations are harmful, although the cells of
the first generation are initialized as cells of population 1,
their average fitness is lower than the average fitness of

FIG. 5. The fraction of lifetime of individual cells during which
both proteins are present �averaged over 1000 cells per cell popu-
lation� for sensing and nonsensing cells. Wfr=10 000 s.
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“nonmutating” cells of this population. As selection acts, af-
ter �4 generations, the average fitness overcomes the fitness
of cells of population 1 �Fig. 4�.

To confirm that the results are independent of the cells’
initial genotype we simulated, for 100G, populations of 100
cells subject to mutation and selection, where initially, cells
are from each of the 9 populations of sensing and nonsensing
cells. The evolutionary pathways led in all cases, after a vari-
able number of generations, to the same final noise level and
fitness as in Figs. 6 and 7.

C. Effects of slow environmental switching on the evolutionary
dynamics of cell populations

So far cells were in fast-switching environments. We now
study the evolutionary dynamics in slowly switching envi-
ronments. Setting Wfr=500 000 s the environment state
switches, on average, once per cell lifetime.

In slowly varying environments the optimal internal noise
level of nonsensing cells is smaller than in fast-changing
environments, in agreement with experimental results �10�.
Population 3 is now the optimal one, while in the previous
environment it was population 5 �shown for comparison�
�Fig. 8�. The best fit cells maintain a significant number of
switches since the first noisy attractor reached by the TS
might be unfit. A compromise is needed between being stable
as long as possible when well adapted, and the need to

switch otherwise �thus populations 1 and 2 are not the fit-
test�.

In contrast, the internal noise level that maximizes fitness
of sensing cells �Fig. 9� is the same as before. Population 7 is
still the fittest since these cells can, with its noise level, adapt
to any environment change almost independently of the rate
of change.

These results imply that there is an important advantage
in having sensing mechanisms to inform on the environment
state, although cells will have energetic costs associated to
their maintenance and functioning. If the optimal phenotype
is the same for different rates of changes of the environment
state then, when changes occur, these cells have a selective
advantage against nonsensing cells, since nonsensing cells
need mutations to change their switch rate. On long time
scales, such changes in the environment switch rate are
bound to occur, explaining the selective advantage and main-
tenance of energetically expensive sensing mechanisms.

For example, assume that the two cell types coexisted in
direct competition for a long time in an environment with a
given switch rate, implying that they are equally and opti-
mally fit there. Also, assume that when the environment
switch rate suddenly changes, survival will not depend on
mutations since there is not sufficient time to accumulate the
necessary mutations. Since the genotype of sensing cells will
still be optimal, unlike the genotype of nonsensing cells �no
longer optimal�, sensing cells are expected to prevail after a
few generations.

FIG. 6. Average noise level of P1+ P2 time series of individual
cells for sensing and nonsensing cells. 30 generations, 100 cells per
generation. Wfr=10 000 s. Changes in the mean levels of P1+ P2

are below �10% in both cell types.

FIG. 7. Average fitness of sensing and nonsensing cells. 30 gen-
erations, 100 cells per generation. Wfr=10 000 s.

FIG. 8. Fitness at the end of the lifetime of nonsensing cells
�averaged over 1000 cells per population� of cell populations with
distinct values of kt and kd subject to fast �Wfr=10 000 s� and
slowly switching environments �Wfr=500 000 s�.

FIG. 9. Fitness at the end of the lifetime of sensing cells �aver-
aged over 1000 cells per population� of cell populations with dis-
tinct values of kt and kd subject to fast �Wfr=10 000 s� and slowly
switching environments �Wfr=500 000 s�.
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This can be tested by confronting directly sensing and
nonsensing cells for several generations, in an environment
with a given switch rate, assuming that the two cell types
previously coexisted, and thus were equally fit, in an envi-
ronment with another switch rate.

D. Effects of changing the environment fluctuation rate in
sensing and nonsensing cells

A problem in confronting sensing and nonsensing cells is
that they do not have equal absolute fitness even if both are
optimally adapted to a given environment. While sensing
cells have higher fitness in slowly and rapidly switching en-
vironments �Figs. 8 and 9�, it is necessary to show that, if the
two cell types had equal fitness when optimally adapted to
some fluctuation rate, sensing cells would prevail if the fluc-
tuation rate suddenly changed.

It is noted that increasing the environment switch fre-
quency causes sensing cells fitness to decrease. This is due to
an interesting difference in how individual sensing and non-
sensing cells cope with a bistable environment. Assuming
that the two cell types are optimally adapted, when the envi-
ronment is in a given state, most sensing cells will be in the
appropriate internal state while only �50% of nonsensing
cells will be in the appropriate internal state. Thereby, when
the environment state changes, for a short period, most sens-
ing cells will be unadapted while �50% of nonsensing cells
will already be in the correct state.

Thus, increasing the environment flip rate decreases
mostly the fitness of sensing cells, although these cells fit-
ness is always higher than the nonsensing ones for any lim-
ited environment flip rate. In the limit case, if the environ-
ment is always flipping �e.g., if Wfr=1 s�, sensing and
nonsensing cells fitness will be identical.

This limit case is, however, irrelevant, in the sense that if
the environment flipped that fast, it would be unreasonable to
use a bistable gene network to cope with it.

If confronting the two cell types given the fitness values
previously found, and tuning only the fitness of sensing cells
so that it would match the fitness of nonsensing cells for a
given environment fluctuation rate, the results would depend
on the initial environment flip rate one assumes the two cell
types are equally well adapted to.

To confront the two cell types ability to cope with sudden
changes in the environment flip rate, independently of the
value of initial flip rate, and assuming identical fitness for
sensing and nonsensing cells for that rate, one needs to adjust
the fitness calculations so that two conditions are satisfied: �i�
given a optimally adapted sensing cell and a optimally
adapted nonsensing cell to a given environment switch rate,
the two ought to have equal fitness, and �ii� given an opti-
mally adapted sensing and/or nonsensing cell to a slowly
varying environment and a optimally adapted sensing and/or
nonsensing cell to a rapidly varying environment, the two
ought to be equally fit.

The simplest way to fulfill these two conditions is to “nor-
malize” the fitness values of each population of a given cell
type such that the fitness of the optimally adapted population
to a given environment equals 1. The fitness of the other

populations �with different noise levels� in the same environ-
ment, normalized by the same factor, are thus always smaller
than 1. The normalized fitness of each population of each
cell type is shown in Fig. 10 for rapidly and slowly switching
environments. The absolute fitness values �prior to normal-
ization� equal the values in Figs. 8 and 9.

The inverse of the fitness value of the fittest population
within the set of populations of a given cell type can be used
as the multiplicative factor of cfit, resulting in the fitness
value of each population in Fig. 10.

Given these cell populations, we start with a population of
cells such that 50% are sensing and 50% are nonsensing.
Assuming that the two cell types have been in an environ-
ment with Wfr=10 000 for a long time, their genotypes are
optimal for that environment. Thus, nonsensing cells geno-
type is that of population 5, and sensing cells genotype is
that of population 7, the ones best fit to Wfr=10 000. Setting
Wfr to 500 000, 100 independent simulations of 50 genera-
tions with 100 cells per generation were done �Fig. 11�.

As seen in Fig. 11, in a slowly varying environment, sens-
ing cells rapidly outcompete nonsensing cells �importantly,
much faster than the time that would probably be needed for
nonsensing cells to adapt via mutations�. Although the fitness
of the two cell types is identical for �Wfr=10 000 s�, the
change of environment switch rate to Wfr=500 000 s causes

FIG. 10. Normalized fitness at the end of the lifetime of sensing
and nonsensing cells �averaged over 1000 cells per population� of
cell populations with distinct values of kt and kd subject to rapidly
�Wfr=10 000 s� and slowly switching environments �Wfr

=500 000 s�.

FIG. 11. Average of 100 simulations of the ratio of sensing cells
in populations of 100 cells over ten generations in a slowly switch-
ing environment �Wfr=500 000 s� and in a rapidly switching envi-
ronment �Wfr=10 000 s�.
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nonsensing cells to become less fit due to no longer being the
best fit nonsensing cells.

In the opposite case, with both cell types equally well
adapted to Wfr=500 000 s and then confronted in an envi-
ronment with Wfr=10 000 s, we set as initial cell popula-
tions, population 3 for nonsensing cells and population 7 for
sensing cells �the optimal ones for Wfr=500 000 s�. Again,
sensing cells prevail �Fig. 11�. Note that in this case it takes
more generations for sensing cells to prevail, since the de-
crease in fitness of nonsensing cells due to the change in the
environment flip rate �Fig. 10� is smaller than in the previous
case.

As said, these results hold only if the environment is not
always switching. If constantly switching, sensing cells
would not benefit from their ability to adjust to the environ-
ment state. However, a mechanism of switching between two
states is likely to evolve only when it would be beneficial
�regardless of having a sensing mechanism or not�, i.e., when
there are two well-defined environment states, which implies
a limited switching frequency.

IV. DISCUSSION

It was observed that, without sensing mechanisms, cells
with fast interphenotype switching rate are more fit than slow
ones in rapidly changing two-state environments, while the
opposite is true in rarely changing environments �10�. Our
results are in agreement. Also, it was hypothesized but not
yet experimentally assessed that if cells sense the environ-
ment state they could evolve high response rates to switch as
soon as a change is detected �4�. Our results also agree with
this hypothesis. Namely, information on the environment
state was shown to not remove the need to maximize internal
noise, to allow fast phenotypic state switching to cope with
unpredictable environmental changes as suggested in �8�.

Both cell types able and unable to receive and act upon
information on the environment state, in rapidly switching
environments, evolved towards maximizing the TS switch
rate. To achieve it, cells maximized the noise of the TS ex-
pression level. Sensing cells evolved towards a genotype
whose phenotype bistability relies on the signals received
from the environment, since these stabilize the TS state if
this state is adapted to the environment state. This evolution-

ary pathway of increasing internal noise is, in both cell types,
limited by the loss of bistability, since this loss implies in-
ability to respond to environmental changes, which results in
the existence of an optimal phenotype. The results indicate
therefore that bounded maximization of noise within the
space of gene networks accessible via genome evolution may
play an important role in the natural selection of gene net-
works responsible for tackling unpredictable environmental
changes.

The maintenance, by cells, of sensing mechanisms of the
environment state is bound to be limited to the cases where it
is energetically viable. Such energetic costs vary on a case by
case basis and are likely to depend on many variables, such
as on what specific information is being gathered �which
determines what mechanisms can gather it� and the rate by
which the environment conditions change. In the case here
studied, the energetic cost to maintain the sensing mecha-
nism is in the production of chemical signals able to unre-
press a gene’s promoter region, assumed as an energetically
viable process.

Given the premise of low energetic costs in sensing and
limited environmental state switching rate, importantly, a
significant advantage was found that justifies the mainte-
nance by cells of sensing mechanisms informing on the en-
vironment state, although there are energetic costs to do so.
Namely, the optimal phenotype of cells that sense the envi-
ronment state is independent of the environment variability
rate. While cells without sensing need genotypic changes
�mutations� to adapt to changes in the environment switch
rate, sensing mechanisms remove this need and thereby pro-
vide an important selective advantage. In �8� it was shown
that stochastic switching can be favored over sensing when
the environment changes infrequently. However, in long time
scales, not only the environment changes, but also the rate at
which it changes can vary, and in this scenario, sensing pro-
vides a selective advantage if the energetic costs of sensing
are sustainable.
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